skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Del Maestro, Adrian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nuclear magnetic resonance (NMR) experiments can reveal local properties in materials, but are often limited by the low signal-to-noise ratio. Spin squeezed states have an improved resolution below the Heisenberg limit in one of the spin components, and have been extensively used to improve the sensitivity of atomic clocks, for example [1]. Interacting and entangled spin ensembles with non-linear coupling are a natural candidate for implementing squeezing. Here, we propose measurement of the spin-squeezing parameter that itself can act as a local probe of emergent orders in quantum materials. In particular, we demonstrate how to investigate an anisotropic electric field gradient via its coupling to the nuclear quadrupole moment. While squeezed spin states are pure, the squeezing parameter can be estimated for both pure and mixed states. We evaluate the range of fields and temperatures for which a thermal-equilibrium state is sufficient to improve the resolution in an NMR experiment and probe relevant parameters of the quadrupole Hamiltonian, including its anisotropy. 
    more » « less
  2. Abstract As the spatial dimension is lowered, locally stabilizing interactions are reduced, leading to the emergence of strongly fluctuating phases of matter without classical analogues. Here we report on the experimental observation of a one dimensional quantum liquid of 4 He using nanoengineering by confining it within a porous material preplated with a noble gas to enhance dimensional reduction. The resulting excitations of the confined 4 He are qualitatively different than bulk superfluid helium, and can be analyzed in terms of a mobile impurity allowing for the characterization of the emergent quantum liquid beyond the Luttinger liquid paradigm. The low dimensional helium system offers the possibility of tuning via pressure—from weakly interacting, all the way to the super Tonks-Girardeau gas of strongly interacting hard-core particles. 
    more » « less
  3. null (Ed.)